direct product, metabelian, nilpotent (class 4), monomial, 2-elementary
Aliases: C5×C42.C4, C42.2C20, (C4×C20).22C4, (C2×D4).3C20, (C2×C20).19D4, (D4×C10).19C4, C4.10D4⋊5C10, C4.4D4.3C10, C10.57(C23⋊C4), (Q8×C10).155C22, (C2×C4).3(C5×D4), (C2×C4).3(C2×C20), C2.10(C5×C23⋊C4), (C2×Q8).1(C2×C10), (C2×C20).187(C2×C4), (C5×C4.10D4)⋊12C2, (C5×C4.4D4).12C2, C22.14(C5×C22⋊C4), (C2×C10).141(C22⋊C4), SmallGroup(320,160)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C42.C4
G = < a,b,c,d | a5=b4=c4=1, d4=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1c-1, dcd-1=b2c-1 >
Subgroups: 146 in 64 conjugacy classes, 26 normal (18 characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C10, C10, C42, C22⋊C4, M4(2), C2×D4, C2×Q8, C20, C2×C10, C2×C10, C4.10D4, C4.4D4, C40, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×C10, C42.C4, C4×C20, C5×C22⋊C4, C5×M4(2), D4×C10, Q8×C10, C5×C4.10D4, C5×C4.4D4, C5×C42.C4
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C10, C22⋊C4, C20, C2×C10, C23⋊C4, C2×C20, C5×D4, C42.C4, C5×C22⋊C4, C5×C23⋊C4, C5×C42.C4
(1 14 55 63 23)(2 15 56 64 24)(3 16 49 57 17)(4 9 50 58 18)(5 10 51 59 19)(6 11 52 60 20)(7 12 53 61 21)(8 13 54 62 22)(25 45 73 33 65)(26 46 74 34 66)(27 47 75 35 67)(28 48 76 36 68)(29 41 77 37 69)(30 42 78 38 70)(31 43 79 39 71)(32 44 80 40 72)
(1 3)(2 26 6 30)(4 28 8 32)(5 7)(9 48 13 44)(10 12)(11 42 15 46)(14 16)(17 23)(18 68 22 72)(19 21)(20 70 24 66)(25 27)(29 31)(33 35)(34 60 38 64)(36 62 40 58)(37 39)(41 43)(45 47)(49 55)(50 76 54 80)(51 53)(52 78 56 74)(57 63)(59 61)(65 67)(69 71)(73 75)(77 79)
(1 31 5 27)(2 28 6 32)(3 29 7 25)(4 26 8 30)(9 46 13 42)(10 47 14 43)(11 44 15 48)(12 45 16 41)(17 69 21 65)(18 66 22 70)(19 67 23 71)(20 72 24 68)(33 57 37 61)(34 62 38 58)(35 63 39 59)(36 60 40 64)(49 77 53 73)(50 74 54 78)(51 75 55 79)(52 80 56 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,14,55,63,23)(2,15,56,64,24)(3,16,49,57,17)(4,9,50,58,18)(5,10,51,59,19)(6,11,52,60,20)(7,12,53,61,21)(8,13,54,62,22)(25,45,73,33,65)(26,46,74,34,66)(27,47,75,35,67)(28,48,76,36,68)(29,41,77,37,69)(30,42,78,38,70)(31,43,79,39,71)(32,44,80,40,72), (1,3)(2,26,6,30)(4,28,8,32)(5,7)(9,48,13,44)(10,12)(11,42,15,46)(14,16)(17,23)(18,68,22,72)(19,21)(20,70,24,66)(25,27)(29,31)(33,35)(34,60,38,64)(36,62,40,58)(37,39)(41,43)(45,47)(49,55)(50,76,54,80)(51,53)(52,78,56,74)(57,63)(59,61)(65,67)(69,71)(73,75)(77,79), (1,31,5,27)(2,28,6,32)(3,29,7,25)(4,26,8,30)(9,46,13,42)(10,47,14,43)(11,44,15,48)(12,45,16,41)(17,69,21,65)(18,66,22,70)(19,67,23,71)(20,72,24,68)(33,57,37,61)(34,62,38,58)(35,63,39,59)(36,60,40,64)(49,77,53,73)(50,74,54,78)(51,75,55,79)(52,80,56,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;
G:=Group( (1,14,55,63,23)(2,15,56,64,24)(3,16,49,57,17)(4,9,50,58,18)(5,10,51,59,19)(6,11,52,60,20)(7,12,53,61,21)(8,13,54,62,22)(25,45,73,33,65)(26,46,74,34,66)(27,47,75,35,67)(28,48,76,36,68)(29,41,77,37,69)(30,42,78,38,70)(31,43,79,39,71)(32,44,80,40,72), (1,3)(2,26,6,30)(4,28,8,32)(5,7)(9,48,13,44)(10,12)(11,42,15,46)(14,16)(17,23)(18,68,22,72)(19,21)(20,70,24,66)(25,27)(29,31)(33,35)(34,60,38,64)(36,62,40,58)(37,39)(41,43)(45,47)(49,55)(50,76,54,80)(51,53)(52,78,56,74)(57,63)(59,61)(65,67)(69,71)(73,75)(77,79), (1,31,5,27)(2,28,6,32)(3,29,7,25)(4,26,8,30)(9,46,13,42)(10,47,14,43)(11,44,15,48)(12,45,16,41)(17,69,21,65)(18,66,22,70)(19,67,23,71)(20,72,24,68)(33,57,37,61)(34,62,38,58)(35,63,39,59)(36,60,40,64)(49,77,53,73)(50,74,54,78)(51,75,55,79)(52,80,56,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,14,55,63,23),(2,15,56,64,24),(3,16,49,57,17),(4,9,50,58,18),(5,10,51,59,19),(6,11,52,60,20),(7,12,53,61,21),(8,13,54,62,22),(25,45,73,33,65),(26,46,74,34,66),(27,47,75,35,67),(28,48,76,36,68),(29,41,77,37,69),(30,42,78,38,70),(31,43,79,39,71),(32,44,80,40,72)], [(1,3),(2,26,6,30),(4,28,8,32),(5,7),(9,48,13,44),(10,12),(11,42,15,46),(14,16),(17,23),(18,68,22,72),(19,21),(20,70,24,66),(25,27),(29,31),(33,35),(34,60,38,64),(36,62,40,58),(37,39),(41,43),(45,47),(49,55),(50,76,54,80),(51,53),(52,78,56,74),(57,63),(59,61),(65,67),(69,71),(73,75),(77,79)], [(1,31,5,27),(2,28,6,32),(3,29,7,25),(4,26,8,30),(9,46,13,42),(10,47,14,43),(11,44,15,48),(12,45,16,41),(17,69,21,65),(18,66,22,70),(19,67,23,71),(20,72,24,68),(33,57,37,61),(34,62,38,58),(35,63,39,59),(36,60,40,64),(49,77,53,73),(50,74,54,78),(51,75,55,79),(52,80,56,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])
65 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | ··· | 4E | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 20A | ··· | 20T | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 8 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
65 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | |||||||||||
image | C1 | C2 | C2 | C4 | C4 | C5 | C10 | C10 | C20 | C20 | D4 | C5×D4 | C23⋊C4 | C42.C4 | C5×C23⋊C4 | C5×C42.C4 |
kernel | C5×C42.C4 | C5×C4.10D4 | C5×C4.4D4 | C4×C20 | D4×C10 | C42.C4 | C4.10D4 | C4.4D4 | C42 | C2×D4 | C2×C20 | C2×C4 | C10 | C5 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 4 | 8 | 4 | 8 | 8 | 2 | 8 | 1 | 2 | 4 | 8 |
Matrix representation of C5×C42.C4 ►in GL4(𝔽41) generated by
18 | 0 | 0 | 0 |
0 | 18 | 0 | 0 |
0 | 0 | 18 | 0 |
0 | 0 | 0 | 18 |
0 | 40 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 0 | 32 |
0 | 32 | 0 | 0 |
32 | 0 | 0 | 0 |
0 | 0 | 0 | 32 |
0 | 0 | 32 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 40 | 0 | 0 |
1 | 0 | 0 | 0 |
G:=sub<GL(4,GF(41))| [18,0,0,0,0,18,0,0,0,0,18,0,0,0,0,18],[0,40,0,0,40,0,0,0,0,0,32,0,0,0,0,32],[0,32,0,0,32,0,0,0,0,0,0,32,0,0,32,0],[0,0,0,1,0,0,40,0,1,0,0,0,0,1,0,0] >;
C5×C42.C4 in GAP, Magma, Sage, TeX
C_5\times C_4^2.C_4
% in TeX
G:=Group("C5xC4^2.C4");
// GroupNames label
G:=SmallGroup(320,160);
// by ID
G=gap.SmallGroup(320,160);
# by ID
G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-2,280,309,2803,2530,248,4911,375,172,10085]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^4=c^4=1,d^4=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1*c^-1,d*c*d^-1=b^2*c^-1>;
// generators/relations